絞り込み

16633

広告

Molecular and Material Engineering of Photocathodes Derivatized with Polyoxometalate Supported- {Mo3S4} HER Catalysts.

著者 Tourneur J , Fabre B , Loget G , Vacher A , Mériadec C , Ababou-Girard S , Gouttefangeas F , Joanny L , Cadot E , Haouas M , Leclerc-Laronze N , Falaise C , Guillon E
J Am Chem Soc.2019 Jun 26 ; ():.
この記事をPubMed上で見るPubMedで表示
この記事をGoogle翻訳上で見る Google翻訳で開く

スターを付ける スターを付ける     (4view , 0users)

Full Text Sources

Molecular engineering of efficient HER catalysts is an attractive approach for controlling the spatial environment of specific building units selected for their intrinsic functionality required within the multistep HER process. As the {Mo3S4} core derived as various coordination complexes has been identified as one as the most promising MoSx-based HER electrocatalysts, we demonstrate that the covalent association between the {Mo3S4} core and the redox-active macrocyclic {P8W48} polyoxometalate (POM) produces a striking synergistic effect featured by high HER performance. Various experiments carried out in homogeneous conditions showed that this synergistic effect arises from the direct connection between the {Mo3S4} cluster and the toroidal {P8W48} units featured by a stoichiometry which can be tuned from two to four {Mo4S4} cores per {P8W48} unit. In addition, we report that this effect is preserved within heterogeneous photoelectrochemical devices where the {Mo3S4}-{P8W48} (thio-POM) assembly was used as co-catalyst (cocat) onto a microstructured p-type silicon. Using drop-casting procedure to immobilize cocat onto the silicon interface led to high initial HER performance under simulated sunlight achieving a photocurrent density of 10 mA.cm-2 at +0.13 V vs RHE. Furthermore, electrostatic incorporation of the thio-POM anion cocat into a poly(3,4-ethylenedioxythiophene) (PEDOT) film is demonstrated to be efficient and straightforward to durably retain the cocat at the interface of a micropyramidal silicon (SimPy) photocathode. The thio-POM/PEDOT-modified photocathode is able to produce H2 under 1 Sun illumination at a rate of ca. 100 µmol cm-2 h-1 at 0 V vs RHE, highlighting the excellent performance of this photoelectrochemical system.
PMID: 31241321 [PubMed - as supplied by publisher]
印刷用ページを開く Endnote用テキストダウンロード