絞り込み

16548

広告

Activity-Based Probes for Glycosidases: Profiling and Other Applications.

著者 Kuo CL , van Meel E , Kytidou K , Kallemeijn WW , Witte M , Overkleeft HS , Artola ME , Aerts JM
Methods Enzymol.2018 ; 598():217-235.
この記事をPubMed上で見るPubMedで表示
この記事をGoogle翻訳上で見る Google翻訳で開く

スターを付ける スターを付ける     (109view , 0users)

Full Text Sources

Glycosidases mediate the fragmentation of glycoconjugates in the body, including the vital recycling of endogenous molecules. Several inherited diseases in man concern deficiencies in lysosomal glycosidases degrading glycosphingolipids. Prominent is Gaucher disease caused by an impaired lysosomal β-glucosidase (glucocerebrosidase, GBA) and resulting in pathological lysosomal storage of glucosylceramide (glucocerebroside) in tissue macrophages. GBA is a retaining glucosidase with a characteristic glycosyl-enzyme intermediate formed during catalysis. Using the natural suicide inhibitor cyclophellitol as a lead, we developed mechanism-based irreversible inhibitors of GBA equipped with a fluorescent reporter. These reagents covalently link to the catalytic nucleophile residue of GBA and permit specific and sensitive visualization of active enzyme molecules. The amphiphilic activity-based probes (ABPs) allow in situ detection of active GBA in cells and organisms. Furthermore, they may be used to biochemically confirm the diagnosis of Gaucher disease and they might assist in screening for small compounds interacting with the catalytic pocket. While the focus of this chapter is ABPs for β-glucosidases and Gaucher disease, the described concept has meanwhile been extended to other retaining glycosidases and related disease conditions as well.
PMID: 29306436 [PubMed - in process]
印刷用ページを開く Endnote用テキストダウンロード