絞り込み

16644

広告

Evident Enhancement of Photoelectrochemical Hydrogen Production by Electroless Deposition of M-B (M = Ni, Co) Catalysts on Silicon Nanowire Arrays.

著者 Yang Y , Wang M , Zhang P , Wang W , Han H , Sun L
ACS Appl Mater Interfaces.2016 Oct 20 ; ():.
この記事をPubMed上で見るPubMedで表示
この記事をGoogle翻訳上で見る Google翻訳で開く

スターを付ける スターを付ける     (1view , 0users)

Full Text Sources

Modification of p-type Si surface by active and stable earth abundant electrocatalysts is an effective strategy to improve the sluggish kinetics for the hydrogen evolution reaction (HER) at p-Si/electrolyte interface and to develop highly efficient and low-cost photocathodes for hydrogen production from water. To this end, Si nanowire (Si-NW) array has been loaded with highly efficient electrocatalysts, M-B (M = Ni, Co), by facile and quick electroless plating to build M-B catalyst-modified Si nanowire-array-textured photocathodes for water reduction to H2. Compared with the bare Si-NW array, composite Si-NWs/M-B arrays display evidently enhanced photoelectrochemical (PEC) performance. The onset potential (Vphon) of cathodic photocurrent is positively shifted by 530-540 mV to 0.44-0.45 V vs. RHE, and the short-circuit current density (Jsc) is up to 19.5 mA cm(-2) in neutral buffer solution under simulated 1 sun illumination. Impressively, the half-cell photopower conversion efficiencies (ηhc) of the optimized Si-NWs/Co-B (2.53%) and Si-NWs/Ni-B (2.45%) are comparable to that of Si-NWs/Pt (2.46%). In terms of the large Jsc, Vphon, and ηhc values, as well as the high Faradaic efficiency, Si-NWs/M-B electrodes are among the top performing Si photocathodes which are modified with HER electrocatalysts but have no buried solid/solid junction.
PMID: 27762535 [PubMed - as supplied by publisher]
印刷用ページを開く Endnote用テキストダウンロード