絞り込み

16646

広告

Effect of Cholesterol and 6-Ketocholestanol on Membrane Dipole Potential and Sterol Flip-Flop Motion in Bilayer Membranes.

著者 Shen H , Wu Z , Zhao K , Yang H , Deng M , Wen S
Langmuir.2019 Aug 02 ; ():.
この記事をPubMed上で見るPubMedで表示
この記事をGoogle翻訳上で見る Google翻訳で開く

スターを付ける スターを付ける     (3view , 0users)

Full Text Sources

A variety of experimental and theoretical approaches have been employed to investigate sterol flip-flop motion in lipid bilayer membranes. However, the sterol effect on the dipole potential of lipid bilayer membranes is less well studied and the influence of dipole potential on sterol flip-flop in lipid bilayer membranes is less well understood. In our previous works, we have demonstrated the performance of our coarse-grained (CG) model in the computation of the dipole potential. In this work, five 30-μs coarse-grained (CG) simulations of dimyristoylphosphatidylcholine (DMPC) bilayers were carried out respectively at different sterol concentrations (in a range from 10% to 50% mole fraction). Then, a comparison was made between the effects of cholesterol (CHOL) and 6-ketocholestanol (6-KC) on the dipole potential of DMPC lipid bilayers as well as the sterol flip-flop motion. Our CG simulations show that membrane dipole potential is impacted more significantly by 6-KC than by CHOL. This finding is consistent with recent experimental studies. Meanwhile, our work suggests that the sterol-sterol interactions (in particular electrostatic interactions) should be critical to the formation of sterol-sterol clusters, which would hinder the sterol flip-flop motion inside lipid bilayers. This is in support of recent experimental study on the sterol transportation in lipid bilayer membranes.
PMID: 31373497 [PubMed - as supplied by publisher]
印刷用ページを開く Endnote用テキストダウンロード