絞り込み

16403

広告

Assessing current temporal and space-time anomalies of disease incidence.

著者 Wu CC , Chen CH , Shete S
PLoS One.2017 ; 12(11):e0188065.
この記事をPubMed上で見るPubMedで表示
この記事をGoogle翻訳上で見る Google翻訳で開く

スターを付ける スターを付ける     (5view , 0users)

Full Text Sources

Approaches used to early and accurately characterize epidemiologic patterns of disease incidence in a temporal and spatial series are becoming increasingly important. Cluster tests are generally designed for retrospective detection of epidemiologic anomalies in a temporal or space-time series. Timely identification of anomalies of disease or poisoning incidence during ongoing surveillance or an outbreak requires the use of sensitive statistical methods that recognize an incidence pattern at the time of occurrence. This report describes 2 novel analytical methods that focus on detecting anomalies of incidence at the time of occurrence in a temporal and space-time series. The first method describes the paucity of incidence at the time of occurrence in an ongoing surveillance and is designed to evaluate whether a decline in incidence occurs on the single current day or during the most recent few days. The second method provides an overall assessment of current clustering or paucity of incidence in a space-time series, allowing for several space regions. We illustrate the application of these methods using a subsample of a temporal series of data on the largest dengue outbreak in Taiwan in 2015 since World War II and demonstrate that they are useful to efficiently monitor incoming data for current clustering and paucity of incidence in a temporal and space-time series. In light of the recent global emergence and resurgence of Zika, dengue, and chikungunya infection, these approaching for detecting current anomalies of incidence in the ongoing surveillance of disease are particularly desired and needed.
PMID: 29131869 [PubMed - in process]
印刷用ページを開く Endnote用テキストダウンロード