絞り込み

16418

広告

PRMT1 mediates podocyte injury and glomerular fibrosis through phosphorylation of ERK pathway.

著者 Yu Z
Biochem Biophys Res Commun.2017 Nov 09 ; ():.
この記事をPubMed上で見るPubMedで表示
この記事をGoogle翻訳上で見る Google翻訳で開く

スターを付ける スターを付ける     (14view , 0users)

Full Text Sources

Miscellaneous

Diabetic nephropathy (DN) is characterized by a change of glomerular structure and dysfunction of filtration barrier, which significantly accompanied by podocytes apoptosis and glomerular fibrosis. Angiotensin Ⅱ(Ang Ⅱ) induced activation of ERK1/2 signaling plays important roles in causing apoptosis of podocytes in DN kidneys. Previous studies have shown that PRMT1 have a pro-inflammatory function through activating ERK1/2 signaling pathway during development of chronic pulmonary disease, However, its role in DN development has not been investigated. Here, we detected a higher expression of PRMT1 in podocytes of kidneys from DN patients compared with normal kidneys. High glucose administration induced elevation of PRMT1 expression in podocytes in vitro, accompanied with higher phosphorylation of ERK and cleaved caspase-3. AMI-1, a selective inhibitor for PRMT1, could block these effects caused by glucose treatment. In vivo administration of AMI-1 also attenuated apoptosis of podocytes during DN development of high-fatty diet-induced diabetic mice. Epithelial to mesenchymal transition during DN development, which characterized by extracellular matrix deposition in podocytes, was also restrained by AMI-1 treatment. Collectively, this study firstly demonstrated that PRMT1 exert podocyte-injury effects in mouse glomerulus through Ang Ⅱ/ERK pathway, which reveals a potential therapeutic target for DN.
PMID: 29129692 [PubMed - as supplied by publisher]
印刷用ページを開く Endnote用テキストダウンロード