絞り込み

16404

広告

目標上積みの「タラノア対話」合意 (毎日新聞)

[PR] 温室ガス削減 「パリ協定」控え18年の1年間かけ実施へ 【ボン五十嵐和大】ドイツのボンで開催中の国連気候変動枠組み条約第23回締約国会議(COP23)...

  1. ドイツの温暖化会議で決議採択 - 福井新...
  2. 国内初の種類 恐竜の卵の化石を展示 山口...
  3. 温暖化、COP23大筋合意 先進国の削減...
  4. 本人望めば蘇生中止 消防庁委託研究班提言...

ニュース一覧

Humanin Specifically Interacts with Amyloid-β Oligomers and Counteracts Their in vivo Toxicity.

著者 Romeo M , Stravalaci M , Beeg M , Rossi A , Fiordaliso F , Corbelli A , Salmona M , Gobbi M , Cagnotto A , Diomede L
J Alzheimers Dis.2017 Mar 06 ; ():.
この記事をPubMed上で見るPubMedで表示
この記事をGoogle翻訳上で見る Google翻訳で開く

スターを付ける スターを付ける     (134view , 0users)

Full Text Sources

Medical

The 24-residue peptide humanin (HN) has been proposed as peptide-based inhibitors able to interact directly with amyloid-β (Aβ) oligomers and interfere with the formation and/or biological properties of toxic Aβ species. When administered exogenously HN, or its synthetic S14G-derivative (HNG), exerted multiple cytoprotective effects, counteracting the Aβ-induced toxicity. Whether these peptides interact directly with Aβ, particularly with the soluble oligomeric assemblies, remains largely unknown. We here investigated the ability of HN and HNG to interact directly with highly aggregating Aβ42, and interfere with the formation and toxicity of its oligomers. Experiments were run in cell-free conditions and in vivo in a transgenic C. elegans strain in which the Aβ toxicity was specifically due to oligomeric species. Thioflavin-T assay indicated that both HN and HNG delay the formation and reduce the final amount of Aβ42 fibrils. In vitro surface plasmon resonance studies indicated that they interact with Aβ42 oligomers favoring the formation of amorphous larger assemblies, observed with turbidity and electron microscopy. In vivo studies indicated that both HN and HNG decrease the relative abundance of A11-positive prefibrillar oligomers as well as OC-positive fibrillar oligomers and had similar protective effects. However, while HN possibly decreased the oligomers by promoting their assembly into larger aggregates, the reduction of oligomers caused by HNG can be ascribed to a marked decrease of the total Aβ levels, likely the consequence of the HNG-induced overexpression of the Aβ-degrading enzyme neprilysin. These findings provide information on the mechanisms underlying the anti-oligomeric effects of HN and HNG and illustrate the role of S14G substitution in regulating the in vivo mechanism of action.
PMID: 28282805 [PubMed - as supplied by publisher]
印刷用ページを開く Endnote用テキストダウンロード