絞り込み

17048

広告

Tracking "apolar" NMe4+ ions within two polyoxothiomolybdates that have the same pores: smaller clathrate and larger highly porous clusters in action.

著者 Korenev VS , Boulay AG , Haouas M , Bannani F , Fedin VP , Sokolov MN , Terazzi E , Garai S , Müller A , Taulelle F , Marrot J , Leclerc N , Floquet S , Cadot E
Chemistry.2014 Mar 10 ; 20(11):3097-105.
この記事をPubMed上で見るPubMedで表示
この記事をGoogle翻訳上で見る Google翻訳で開く

スターを付ける スターを付ける     (4view , 0users)

Full Text Sources

Two nanosized polyoxothiometalates were synthesized based on linking oxomolybdate building blocks with {Mo2O2S2}(2+) groups. Remarkably, both compounds are formed selectively primarily upon changing the related concentrations in a logical way; they exhibit common structural features based on the same {Mo9O6S3}-type pores, which result in connections between {Mo6O21} pentagons and {Mo2O2S2}(2+) linkers. Whereas the much larger spherical Mo132-type Keplerate contains twenty pores, the smaller Mo63 -type cluster remarkably contains only two. The two compounds and a similar Keplerate exhibit interesting supramolecular properties related to interactions with the unusual predominantly apolar NMe4(+) cations. Structural characterization of the Mo63 -type compound reveals in the solid state a clathrate-like species that contains four NMe4(+) cations embedded in two types of structurally well-adapted pockets. Related NMR spectroscopic investigations in solution using NMe4(+) as the NMR spectroscopic probe are in agreement with the solid-state description. (1)H NMR spectroscopic experiments (1D variable-temperature, 2D total correlation spectroscopy (TOCSY), exchange spectroscopy (EXSY), and diffusion-ordered spectroscopy (DOSY)) feature firmly immobilized and mobile NMe4(+) ions in relationship with the type of host-guest arrangements. The use of the (1)H NMR DOSY spectroscopic methodology has been successfully applied to track the interactions of the NMe4(+) cations with the {Mo9O6S3} pores of a sulfurated Keplerate, thereby allowing the first quantitative analysis of this type of plugging process. The stability constant K=(210±20) mol(-1)  L is discussed related to the character of the process.
PMID: 24519761 [PubMed]
印刷用ページを開く Endnote用テキストダウンロード